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Using the Laplace transform method we show an exact solution for the mean free passage time of a
subdiffusive particle, thereby correcting the mistake in our previous paper@Phys. Rev E62, 6065~2000!#. The
time diverges at larget.
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Anomalous diffusion is a widely investigated phenom
enon with an increasing number of applications in differe
areas of science~see Refs.@1#, @2#, and hundreds of refer
ences therein!. Although the asymptotic solutions of th
boundary value problems can be easily obtained by diffe
methods, the derivation of an exact solution is a challeng
task. From a few existing methods for the solution ment
should be made of the use of Fox functions@3,4#, integral
transformations based on the continuum time random w
@5#, and Laplace transformations@6#. The latter method
which was successfully applied to the normal diffusion@7#,
offers such advantages as simplicity and a derivation of e
solutions by the inverse Laplace transformation. In our p
vious work@6# the exact solution of the Laplace transform
Fokker-Planck equation was obtained correctly; however,
the special case of subdiffusion the inverse Laplace tra
form was performed incorrectly which resulted in the wro
answer. This fact was pointed out by Yuste and Lindenb
@8# who, however, did not provide an exact expression
the mean free passage time. The latter is obtained in
comment, thereby correcting our previously published@6#
erroneous result for this special case.

The mean first passage timeT ~MFPT! is the time needed
for a stochastically moving particle to reach one of the t
absorbing boundariesx50 or x5L, when initially it was
located at some pointx0 in the interval (0,L). It can be
shown @9# that T is expressed, in terms of the probabili
density functionP(x,t), as

T5E
0

`

dtS~ t !5E
0

`

dtE
0

L

dxP~x,t !, ~1!

whereS(t) is the so-called survival probability.
The functionP(x,t) can be found from the solution of th

Fokker-Planck equation, which for the case of subdiffus
has the fractional form@1,2#

]aP

]ta 52Fa

]P

]x
1Da

]2P

]x2 1
ta

G~11a!
d~x!, ~2!

with a,1. The fractional derivative in Eq.~2! is understood
in terms of the Riemann-Liouville integral@1,2#
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The time-Laplace transform of Eq.~2! converts this par-
tial differential equation into the ordinary one,

Da

]2P~x,s!

]x2 2Fa

]P~x,s!

]x
5saP~x,s!2sa21d~x2x0!.

~4!

Equation~4! has been solved separately in two interva
P1 for 0<x<x0 and P2 for x0<x<L, with matching con-
ditions atx5x0 yielding to @6#

P1~x,s!5
exp@Fa~x2x0!/2Da#sinh@g~L2x0!#sinh~gx!

s12a/2 sinh~gL !
,

~5!

P2~x,s!5
exp@Fa~x2x0!/2Da#sinh@g~L2x!#sinh~gx0!

s12a/2 sinh~gL !
,

where g5sa/2Da
21/2. For simplicity we consider hereafte

only the zero drift case,Fa50. The calculations for the non
zero drift case,FaÞ0, are quite similar but slightly more
cumbersome. The Laplace transform of the survival pr
ability S(s) is defined as

S~s!5S1~s!1S2~s!5E
0

x0
P1~x,s!dx1E

x0

L

P2~x,s!dx.

~6!

On replacing Eq.~5! with Fa50 into Eq.~6! and performing
integration, one obtains

S~s!5
1

sF 12

coshFg2 ~L22x0!G
coshS gL

2 D G . ~7!

Finally, substituting Eq.~7! into Eq. ~1! yields

T5
1

2p i E0

`

dtE
C

dsexp~st!

s F 12

coshFg2 ~L22x0!G
coshS gL

2 D G ,

g5
sa/2

ADa

, ~8!
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where the contourC is the usual Bromwich contour for th
inverse Laplace transform.

The full calculation ofT presents no problem. One ca
perform the inverse Laplace transform numerically or a
lytically, bypassing the branch points50. To this end, one
has@10# to transform the Bromwich contour, which is para
lel to the imaginary axis, to the contour composed of t
arcs of radiusR centered at the origin, and of archr, also
with a center at origin, and, finally, to go to the limitsR
→` and r→0. In such a manner the Bromwich integral~8!
rearranges to the usual integral which can be calculated u
the steepest-descent approximation. We will show these
culations elsewhere, noting here only two important poin

~1! In order to find the asymptotic value of the mean fr
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passage time, one has to find the asymptotic value of
integrand in Eq.~8! for s→0 ~or t→`), and then to perform
an integration overt, which immediately gives

Tt→`'t12a* , ~9!

i.e., sincea,1, the mean free passage timeT for subdiffu-
sion diverges at larget.

~2! For normal diffusion~a51! there is no branch point a
s50. Thes integral for this case is included in the table
Ref. @10#, and one finally obtains@6# the well-known result
T5x0(L2x0)/2D.

I am grateful to E. Barkai for very useful discussions.
ys.
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